SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2

نویسندگان

  • HONGQI LI
  • ZHIQIANG FENG
  • WEIZHANG WU
  • JING LI
  • JINQIAN ZHANG
  • TINGYI XIA
چکیده

Lung cancer is the leading cause of death worldwide and associated with dismal prognoses. As a major mitochondrial deacetylase, SIRT3 regulates the activity of enzymes to coordinate global shifts in cellular metabolism and has important implications for tumor growth. Its role as a tumor suppressor or an oncogene in lung cancer is unclear, especially in non-small cell lung carcinoma (NSCLC). To identify the mechanism of SIRT3-interacting proteins, we performed a yeast two-hybrid screen using a human lung cDNA library. One of the positive clones encoded the full-length cDNA of the nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) gene and the interaction between SIRT3 and NMNAT2 was identified. The interaction on growth, proliferation, apoptosis of NSCLC cell lines, and energy metabolism related to SIRT3 were investigated. Screening from the library resulted in NMNAT2 gene. We found that NMNAT2 interacts with SIRT3 both in vitro and in vivo; SIRT3 binds to NMNAT2 deacetylating it. Downregulation of SIRT3 inhibited acetylation of NMNAT2 and NAD+ synthesis activity of the enzyme. Low expression of SIRT3 significantly inhibited mitotic entry, growth and proliferation of NSCLC cell lines and promoted apoptosis, which was related to energy metabolism involving in the interaction between SIRT3 and NMNAT2. Taken together, our results strongly suggest that the binding of SIRT3 with NMNAT2 is a novel regulator of cell proliferation and apoptosis in NSCLC cell lines, implicating the interaction between SIRT3 and NMNAT2, energy metabolism associated with SIRT3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...

متن کامل

Dihydroartemisinin increases radiosensitivity of A549 lung cancer cells

Background: Radiotherapy is the gold standard in the treatment of lung cancer. However, the radiosensitization of cancerous cells requires further improvement. Here, we investigated the effect of dihydroartemisinin (DHA) on the radiosensitization of non-small cell lung cancer (NSCLC) cells. Methods: Cell proliferation and cell cycle assays were carried out using A549 cells exposed to DHA. The e...

متن کامل

Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing Radiation

Tumour cells may be resistant to radiotherapy that results in unsuccessful cancer treatment in patients. The aim of this study was to evaluate the sensitizing effect of atorvastatin (ATV) on breast cancer (MDA-MB-231) and non-small cell lung cancer (A-549) cells following exposure to ionizing radiation (IR). These cells were treated with ATV and exposed to X-ray at dose 4 Gy. The radiosensitizi...

متن کامل

ATM induces radioresistance of non-small cell lung cancer A549 cells by downregulation of MDMX

Background: Tumor radioresistance leads to a reduction in the efficiency of radiation therapy. It is very important to explore the cellular mechanisms leading to radioresistance and to find potential therapeutic targets, which might improve the efficacy of radiation therapy. This study was to investigate the role of ataxia-telangiectasia mutated (ATM) and murine double minute X (MDMX) in radior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2013